MATH 732: CUBIC HYPERSURFACES

DAVID STAPLETON

1. MONODROMY AND LEFSCHETZ PENCILS

These notes are based on [Voi03, Ch. 2&3] and [Huy23, §1.2]. See the
disclaimer section.

Recall U = U(d,n) = PN\ D(d,n) is the set of smooth hypersurfaces.
Today we want to study the topology of the family:

7TU3:X:U - U.

Definition 1.1. Let A be an abelian group and let X be a locally con-
nected space. A local system with stalk A is a sheaf L which is locally
isomorphic to the constant sheaf with stalk A.

Example 1.2. Here’s an example with B = St and A = Zs.
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We consider A as having the discrete topology. On the left, the trivial local
system Zs can be considered to be locally constant sections of ST x A. On
the right, we quotient by the diagonal action of ps on S' x Zs, and the
sheaf on S is locally constant sections of (S x Zs3)[ug — S*/ug ~ S*.

Lemma 1.3 (Ehresmann’s Lemma). Any smooth projective family of
complex varieties

X —->B

is locally constant. In other words, for small enough open sets pe A< B
we have X = X, x A.

Corollary 1.4. In the analytic topology, if B is connected then R™m,Zx
is a local system on B with stalk H™(X,,Zx) (for any be B).
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Remark 1.5. We can take inverse images of local systems. Moreover,
the geometric local systems described in the Corollary respect the cup
product.

Exercise 1. (1) Show that a local system on [0,1] is trivial.

(2) Show that any local system L on B x [0,1] is isomorphic to the
inverse image: p7*(L|pxo)-

(3) Given a local system L on B, conclude that for any 2 homotopic
paths between x,y € B:

Y1, V2 [07 1] - B

there is an induced ismorphism L, ~ L, which is independent of
the choice of path.

Proposition 1.6. If B is simply connected (and locally arcwise con-
nected), then every local system L (with stalk A) is trivial on B.

Proof. Fix a basepoint x € B, let y € B be any other point and let
~:[0,1] - B

be a path from z to y. By Exercise 1, y~'L is trivial on [0,1] and this
gives an isomorphism:

L,~L,
Also by the exercise, this isomorphism is independent of the path.

So for any two points x,y € B there is a natural isomorphism:
Ly = Ly. (*)

It makes sense then to ask: are these isomorphisms locally constant? (E.g.
if the group A is not discrete, as can happen, we might worry these iso-
morphisms vary continuously.)

We’ll be a little sketchy here. Let P be the space of paths on B. There is
a canonical map:

["Px[0,1]- B

sending v x t — y(t). By the exercise (and some unwinding) we get an
isomorphism of local systems:

'L ~T{'L

(where T'; represents the composition P - P x {t} — P x [0,1] 5 B).
Pointwise this isomorphism of local systems is given by the isomorphism:

Loy = Ly
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described previously. The fact that this is now an isomorphism of local
systems, implies that the isomorphisms (*) vary continuously. (The con-
dition locally arcwise connected implies that the maps I'; are open, which
is useful in proving the sketchy part.) 0

Theorem 1.7. Let B be a locally simply connected (and arcwise con-
nected) space with basepoint x € B. Fiz a group A. There is a bijection:

local systems on B with group - representations
A plus a choice of A~ L, m(B,z) > Aut(A)

Remark 1.8. So, our short-term goal then will be to understand the
representation

T (U, [X]) = Aut(H"(X,Z)).

Proof. Let L be a local system on B with stalk A and choose an isomor-
phism:

oLy ~A.
Consider the universal cover

1% B - B.

Then, by Proposition 1, p~ 'L is locally constant. Moreover, for any chosen
point x’ € B over x € B, there is a unique isomorphism 5: u=!'L ~ A so that
the induced isomorphism:

(L) &,
equals the isomorphism:

(p L)y ~ Ly =5 A

For any vy € (B, x), v-x' € B also maps to & € B. The same isomorphism
[ gives an isomorphism:

Byt
poiLy == A,

but we no longer necessarily have that:

Fw o
N—p Ly~L,— A
is the identity. Let p(y) denote this composition. Then:
p:m (X, x) - Aut(A)
is the associated group homomorphism (we omit the proof that the map

respects composition). This shows that local systems give rise to -
representations.



4 DAVID STAPLETON

In the reverse direction, we start with a representation
p:m(B,z) > A.

Note that 7 (B, x) acts freely on B’ with quotient B. The local system
L, on B assigns to each open set U ¢ B the set of equivariant sections of
A on w1 (U):

L,(U)={se ABI(;L_lU)|p(7) os=soy Vyem(B,z)}.
0

Remark 1.9. The representation associated to a local system is called
the monodromy representation. It is very reasonable to think of a local
system as a sheaf that has parallel transport. Following a loop in the base,
the parallel transport map induces the representation.

Definition 1.10. Recall, a Lefschetz pencil of degree d hypersurface in
P+l is a pencil C? ~ A\ € H(P,0Op(d)) such that

(1) the base locus of A has codimension 2 in P, and
(2) any singular hypersuface A has a single singular point which is an
ordinary double point.

Remark 1.11. Here’s a cartoon of a Lefschetz pencil of quadrics.

QX K

The singular points form a finite subset of P,
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Previously we showed there are (d - 1)"*!(n + 2) singular points 3 ¢ P!,
Computing the monodromy of a Lefschetz pencil means computing the
monodromy action for the family:

xPl\E —> (Pl N E)

As m (P! \ X) is generated by the loops in the picture, it amounts to
understanding how these loops act on cohomology.

Definition 1.12. A Lefschetz degeneration is a map
fiY->AcC

where Y is a smooth, n+1 dimensional (analytic) variety, f is a projective
morphism, smooth away from 0 € A such that the fiber Yy has a single
singularity which is an ordinary double point.

Remark 1.13. So it’s like a tiny neighborhood of a singular point in a
Lefschetz pencil.

Theorem 1.14 (Picard-Lefschetz formula). Let f:Y — A be a Lefschetz
degeneration. Let T € Aut(H™(Y1,Z)) be the image of a generator of
m1(A*,1). There exists a class 6 € H*(Y1,Z) (called a vanishing sphere)
such that for every a e H*(Y1,Z),

T=a+e,({a,0))d.

n(n-1)

(Here €, =—(-1)"=2 and (—,-) is the intersection product)

Example 1.15. Consider the elliptic curve:

y* = (2 - t)(z - 1).

(for t small). This has a double root when ¢ = 0, and we want to consider
the monodromy around the loop t = ee?.
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In this case the green loop is the wvanishing sphere §, because as t = 0,
0 becomes homologous to 0. We see that the magenta loop maps to the
green loop under the monodromy representation. Note, that Ehresmann’s
lemma also gives rise to a diffeomorphism of the torus (that depends on
some trivialization choices). The diffeomorphism here is called a Dehn
twist.

Remark 1.16. The vanishing sphere in the Picard-Lefschetz formula is
defined in several steps.

(1) Analytic locally, the map f looks like:

n+1 2 2
C"' 5> C (z1,.-,2n) P> 21+ + 2.

at the singular point in the fiber.
(2) If B c C"*! is a ball of radius r, then for ¢ = se? small, the fiber
B; contains the sphere

S™ ={(z1,- -+ %0, Zna1) € Blz = Vsew;, 1, € R, Zx? =1.}.

Note that as ¢t — 0, this sphere shrinks to 0. The claim here is that
the fiber B, deformation retracts onto the sphere S™-1. (See the
picture in the example above.)

(3) For the Lefschetz degeneration: f:Y — A, the fundamental class
of S7=! (choosing an orientation) generates the kernel of the com-
position:

H"(Y.,Z)~H,(Y,,Z) > H,(Y,Z).
The class ¢ is this generator in H*(Y,,Z) ~ H(Y,,Z).
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Definition 1.17. For a smooth projective family X — B with marked
fiber X, the mth monodromy group is defined to be the image of the
monodromy representation:

m(B) > Aut(H™(X,Z)).
When Xy gn) = U(d, n) is the universal family, we set
I'(d,n) =Im(m (U(d,n)) - Aut(H"(X,Z))).

Theorem 1.18. Restricting to the case of cubic hypersurfaces, the mon-
odromy group I'(3,n) of the universal smooth cubic is

~ O+(H™(X,Z)) if n is even
L(3n)= {SpO(H"(X,Z),q) if n is odd

Remark 1.19. I won’t define these groups precisely. Note there is a
natural intersection bilinear form on H"(X,Z), which is preserved by
the monodromy action. The bilinear form is symmetric when n is even
and alternating when n is odd. This explains the O and the Sp.

Moreover, in the case n is even, the hyperplane class h™/2 is a monodromy
invariant of H*(X,Z). It follows that there is a representation:

m(U(d,n)) - Aut(H" (X, Z) prim ),

and O*(H"(X,Z)) is a finite index subgroup of O(H"(X, Z) prim ). (In fact,
H"(X,Z) ¢ H*(X, Z) prim ® Zh™? as lattices, and this accounts — to some
extent — for why it is only a finite index subgroup.)

In the caes n is odd, there is a Zs-valued quadratic form (Kervaire in-
variant?) in the picture, and that is the reason for the O.

Big points in the Proof of Theorem. We proceed in a few steps:

(1) First show that for a Lefschetz pencil P! ¢ PN(4) with singular-
ities ¥ ¢ P!, the mapping:

7(P*\X) - m(U(n,d)).

So the monodromy group of U (n, d) is the same as the monodromy
group of the Lefschetz pencil.

(2) The punchline here is that (for hypersufaces) the primitive coho-
mology is generated by the vanishing spheres. In a sentence, this
is an application of Morse Theory / the Lefschetz theorems.

(3) Presumably, then some computation is necessary. I do not know
the details of this computation. I assume it is proved that the sim-
ple loops from the Lefschetz pencil generate these groups directly
(by explicitly describing these groups).
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Theorem 1.20. The monodromy representation
I'(d,n) - Aut(H"(X, Q) prim)

18 1rreducible.

Proof. Again we consider the case of a Lefschetz pencil. We need a couple
of facts. First the pairing on H*(X, Q)prim is non-degenerate and second
the vanishing spheres 9; generate the primitive cohomology.

Suppose that F' € H*(X, Q)prim 18 & non-zero subrepresentation. Let a € I
be any vector. Then for the loop ~; € m (P! \ ¥) we have:

p(7i) (@) = o (e, 6;)0;.
There exists some §; such that (a,d;) # 0. So:

+{a,0;)0; =a—p()(a) e F(= 0; € F).

Now we want to show that the monodromy action acts transitively on the
vanishing spheres, at least up to sign. More globally, a vanishing sphere
can be constructed as follows. Let 0 € U(d,n) be a marked point in the
space of smooth hypersurfaces.

(1) Choose a point y € D(d,n)° (the smooth locus of the discriminant
divisor), and make a small normal disk A, € PN(@n) to D(d,n) at
y. Choose a point y" € Az

(2) Choose a path 7 from 0 to y'.

Then we get a vanishing sphere by choosing a generator of the kernel of
the composition:

H™(Xo, Z) 25 H(X 0, Z) = 0o (X, Z) — Ho(Xa, . Z).
We can call such a vanishing sphere 6., ,, (and let’s denote the composition
¢~.4). Note that all vanishing spheres arise this way.

First, different choices of paths (up to homotopy) differ by pre-composing
with an element in 7’ € m(U(d,n)). The vanishing sphere obtained by
this different vector is given by a generator of the kernel of the map

Gnyy 0 p(7"). Thus:
Oyort,y = 9(7’_1) © 0y -

So we see that monodromy can be used to transport one vanishing sphere
at y to another.
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Finally, we must consider what happens when we choose a different point
z € D(d,n)? and ANY path 0 — 2. Now D(d,n)? is irreducible, so we
choose a path ~,.,, € D(d,n)° from y - 2z and we may make a tubular
neighborhood and use it to construct a path ~:y’ — 2’.

The claim is that
ker(¢,) = ker(qb(vyuzfov),z)'

which shows &, = d, ,__or,:- U

Remark 1.21. In the case of cubic surfaces, we have H2(X, C) = HM(X).
It follows by the Hodge index theorem that the primitive cohomology is
a negative definite lattice. As a consequence, there are only finitely many
automorphisms of the lattice: H2(X, Z)pim (choose any basis {;}, there
are only finitely many elements a € H?(X, Z)pyim with

e, @) < max{|{53;, 5i)[})-
This shows that I'(3,2) is finite, and in fact I'(3,2) = W (Es)!

Exercise 2. In the case n = 0 and d = 3, prove that the monodromy
group of the family Xy 0y = U(3,0) € P3 is &3. The discriminant locus
D(3,0) c P3 is singular along a curve. What is this curve (and prove your
answer)?
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